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A new hybrid method (GNN) combining a genetic algorithm and an artificial neural network
has been developed for quantitative structure-activity relationship (QSAR) studies. A suitable
set of molecular descriptors are selected by a genetic algorithm. This set serves as input to a
neural network, in which model-free mapping of multivariate data is performed. Multiple
predictors are generated that are superior to results obtained from previous studies of the
Selwood data set, which is used to test the method. The neural network technique provides a
graphical description of the functional form of the descriptors that play an important role in
determining drug activity. This can serve as an aid in future design of drug analogues. The
effectiveness of GNN is tested by comparing its results with a benchmark obtained by exhaustive
enumeration. Different fitness strategies that tune the evolution of genetic models are
examined, and QSARs with higher predictiveness are found. From these results, a composite
model is constructed by averaging predictions from several high-ranking models. The
predictions of the resulting QSAR should be more reliable than those derived from a single
predictor because it makes greater use of information and also permits error estimation. An
analysis of the sets of descriptors selected by GNN shows that it is essential to have one each
for the steric, electrostatic, and hydrophobic attributes of a drug candidate to obtain a
satisfactory QSAR for this data set. This type of result is expected to be of general utility in
designing and understanding QSAR.

I. Introduction

Quantitative structure-activity relationships (QSARs)
correlate biological activities of candidate drugs with
their physicochemical parameters. They have evolved
over a period of 30 years from a simple regression model
with a few electronic or thermodynamics variables1 to
an important discipline that is being applied to a wide
range of problems.2-4 Efforts by researchers from
different fields, publication of dedicated journals, and
organization of specialist conferences, as well as the
decreasing cost of computer power, are all contributing
to rapid advances in this field. Two major developments
in QSARs have been made in recent years. First is the
introduction of a wide range of novel molecular descrip-
tors, such as molecular connectivity and other graph
theory based topological indices,5-7 molecular similarity
matrices derived from similarity calculations of elec-
trostatic, shape, or other physicochemical parameters,8-11

and the application of molecular fields in a three-
dimensional lattice environment. Of particular interest
is the CoMFA approach12 which complements the usual
two-dimensional descriptors with three-dimensional
information. Second, many sophisticated feature map-
ping techniques have been introduced for the determi-
nation of QSARs that go significantly beyond the
original linear regression analysis. Principal component
analysis,13 nonlinear mapping,13-15 partial least
squares,12,16 and neural networks17-20 are a few ex-
amples. Most recently, hybrid approaches which inte-
grate various optimization and mapping methods have
begun to be investigated. Rogers et al.21 and Luke22

combined genetic algorithms with regression analysis;
Sutter et al. developed the generalized simulated an-
nealing method that makes use of a simulated anneal-
ing algorithm and a neural network.23 In each case, the
potential of the new hybrid approach was demonstrated
by the development of improved QSARmodels, often for
a problem that had been studied previously with more
standard techniques. In the present study we report a
hybrid method (GNN) that combines a genetic algorithm
with a neural network. It is shown to be superior to all
published approaches for the Selwood data set,24 which
has become a standard for testing QSAR.
Once the biological activities of a series of related

candidate drug has been determined, QSAR models are
typically constructed in several steps. The first step is
the tabulation of experimental or computational phys-
icochemical parameters which provide a description of
the similarities and differences of the compounds under
investigation. This process is generally straightforward
because many of the available computer-aided molecular
design (CAMD) packages25,26 are developed to deal with
this kind of calculation, often with great ease. In many
cases, a standard set of descriptors chosen from experi-
ence is used. Although it seems likely that improved
descriptors could be introduced, that is not our present
concern. The next step is to apply a statistical or
pattern recognition method to correlate these molecular
descriptors with the observed biological activities. This
is often a complex task, particularly when the number
of descriptors exceeds the number of compounds in the
data set, so that one is dealing with an undetermined
problem where undesirable overfitting can result.17,18,27
This problem can be avoided by preprocessing the
descriptor set with a feature selection routine that
determines which of the descriptors have a significant
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influence on the activity of a given compound. In the
past the selection was made by a human expert who
relied on experience and scientific intuition, or by a
correlation analysis of the data set that applied statisti-
cal methods such as forward selection or backward
elimination.24 When the dimensionality of the data is
high and the interrelations between variables are
convoluted, human judgment can be unreliable. Also,
a simple forward or backward stepping algorithm fails
to take into account the information that involves the
combined effect of several features, so that the optimal
solution is not necessary obtained.21,28 This suggests
the need for a method which is applicable to complex
multivariate data, is easy to use, and, of course, supplies
a good solution to the problem. Genetic algorithms,
which are clearly well-suited to tackle problem of this
kind, were introduced to the field of QSARs to address
this need.21,22 After the most relevant features have
been selected, the final stage of the QSAR model
building is executed by a feature-mapping procedure.
Traditionally this has been a multiple linear regression
analysis, which, by its name, is a linear method.
Nonlinear correlation in the data had to be explicitly
dealt with by a predetermined functional transforma-
tion. Unfortunately the introduction of nonlinear or
cross-product terms in a regression equation often
requires knowledge that is not available. Moreover, it
adds to the complexity of the problem and often leads
to no significant improvement in the resulting QSAR.
To overcome this deficiency in linear regression, re-
searchers have begun to use intrinsically nonlinear
techniques such as the neural networks.29,30 Several
QSAR studies with neural networks have demonstrated
that they fit existing data well and often lead to a model
that predicts new compounds with high accuracy.
In this paper we propose a QSAR approach that

makes use of a genetic algorithm to select the descrip-
tors and a neural network as the tool to correlate the
selected descriptors with activity. The integration of
these two optimization methods is shown to lead to a
significant improvement over existing methods for a
well-studied example. We suggest that the genetic
neural network (GNN) algorithm is close to the limit of
what the traditional Hansch-type QSAR can achieve.
The next major advance in QSARs is likely to be based
on the optimized use of three-dimensional data.
Section II presents the method that we have devel-

oped. The results are presented and analyzed in Section
III. Section IV outlines the conclusions.

II. Method

Genetic Algorithms. The genetic algorithm is used to
select the features that are most significant for the molecular
data set. Genetic algorithms are stochastic optimization
methods that have been inspired by evolutionary principles.31
The distinctive aspect of a genetic algorithm is that it
investigates many possible solutions simultaneously, each of
which explores different regions in parameter space.32 In this
paper two variants, genetic function approximation (GFA) and
evolutionary programming (EP), were tried following the
studies of Rogers et al.21 and Luke22 with a few minor
modifications. In both implementations an individual in the
population is represented by a string encoding the selected
features. In the original studies, the fitness of the individual
was determined by a function related to the residual error in
the regression analysis of the training data. Here we try a
variety of fitness functions which are proportional to the

residual error of the training set, the test set, or even the cross-
validation set from the neural network simulations.
The basic design of the two genetic algorithms is sum-

marized in the flow diagram shown in Figure 1. The first step
in a genetic algorithm is to create a gene pool ofN individuals.
Each individual encodes the same number of descriptors; the
descriptors are randomly chosen from a common list and in a
way such that (1) no two individuals can have exactly the same
set of descriptors and (2) all descriptors in a given individual
must be different. The fitness of each individual in this
generation is determined by a user-specified fitness function,
and in the present case, this fitness score is computed by a
neural network. The next step, where GFA differs from EP,
is the reproduction process. In GFA, a sexual reproduction
takes place so that the new offspring contains characteristics
from both of its parents (Figure 2a). Two individuals are
selected probabilistically on the basis of their fitness scores
and serve as parents. Next, in a crossover each parent
contributes a random selection of half of its descriptor set and
a child is constructed by combining these two halves of “genetic
code”. Finally, this child is subjected to a random mutation
in one of its genes; i.e., one descriptor is replaced by another.
This selection-crossover-mutation process is repeated until
all of the N parents in the gene pool are replaced by their
children. The fitness score of each member of this new
generation is again evaluated, and the reproductive cycle is
continued until a desired number of generations or target
fitness score is reached. In our GFA-neural networks (GFA-
NN), two modifications are made to the original implementa-
tion. The first is a stochastic reminder method32 which allows
an individual with above average fitness to be reproduced at
least once. The second is the inclusion of elitism,32 which
protects the fittest individual in any given generation from
crossover or mutation during reproduction. The genetic

Figure 1. Flow diagram describing the strategy for the GFA
and EP algorithms. The GFA enhancements, stochastic
remainder, and elitism, are omitted in the diagram for clarity.
See Figure 2 for the detailed descriptions of the reproduction
strategy.

1522 Journal of Medicinal Chemistry, 1996, Vol. 39, No. 7 So and Karplus



content of this individual simply moves on to the next
generation intact.
Unlike GFA, EP goes through an asexual reproduction

procedure so that the characteristics of each new offspring are
derived from a single parent (Figure 2b). Each parent
produces a child that is initially a replica of itself. The child
is then subjected to a point mutation and its fitness is
determined. TheN fittest individuals from the composite pool
containing both parents and children constituted the next
generation. In this scenario the least fit parents are replaced
by the fittest children, and the average fitness of the system

always increases (or remained constant upon convergence)
with evolutionary time.
Neural Networks. The neural network is used to perform

model-free mapping of molecular descriptors with biological
activity. Neural networks are computer-based simulations
which contain some elements that appear to exist in living
nervous systems. There have recently been numerous ap-
plications of neural network applications to QSAR, as well as
many other chemical problems.33 For details of the neural
network implementation, readers are referred to relevant
references or standard texts.34,35 In this study we used a
traditional steepest descent back-propagation method; a faster
pseudo second derivative method for training has now been
implemented and will be used in future applications. In all
calculations, the same random number seed was used to
initialize the network weights in the range -1.0 to +1.0. The
learning rate and momentum parameters were set at 0.1 and
0.9 initially. An adaptive scheme35 that optimized these two
learning parameters during training was used to achieve faster
convergence. The input and output vectors of the data set were
scaled to take values between 0.1 and 0.9.
Earlier applications of neural networks to QSAR17,18 have

indicated that F, the ratio of the number of data points to the
number of adjustable weights in the neural network, plays a
crucial role in determining the predictive quality of the model.
It is known that a neural network with an insufficient number
of weights is not able to extract the relevant correlation in the
data set. The analysis fails at the training stage, and
unreliable predictions can result. Conversely, if the number
of weights in a neural network is large compared with the
amount of data, then overfitting becomes a problem. The
network has the capacity to memorize the entire data set and
behaves effectively as a lookup table. Thus, it is important to
configure networks that make an optimum compromise be-
tween the need for generalization and the problem of memo-
rization. Empirical studies have suggested values between 1.8
and 2.2 as the appropriate range for F,17,18 and we have selected
a neural network architecture in accord with this value. To
allow for direct comparisons with the previous studies of the
Selwood data set, all of the QSAR models used in this study
were limited to three descriptors. The neural network (Figure
3) was configured with three input, three hidden, and a single
output node (3-3-1). This gives rise to 16 adjustable param-
eters (4 biases for hidden and output nodes and 12 weights
between layers) and a F value of 1.9 since there are 31 data
points.
Model Evaluation and Fitness Functions. In this paper

the quality of the fit of the training data is reflected by its
residual rms error, RmsE (eq 1), or correlation coefficient, R
(eq 2). The more important measure, however, is the predic-
tive quality which is estimated by a cross-validation procedure.
This method, also known as jackknifing or leave-one-out (LOO)
analysis, systematically removes one data point at a time from
the training set. A model is constructed on the basis of this
reduced data set and is subsequently used to predict the
removed sample. This procedure was repeated for all data

Figure 2. (a) Schematic diagram describing the sexual
reproduction strategy in GFA algorithm; the reproduction of
one generation is illustrated. (b) Schematic diagram describ-
ing the asexual reproduction strategy in EP algorithm. In this
example Parent 1, Parent 2, Parent 4, and Child 2 are the
fittest individuals in the composite pool, and they are selected
as the next set of parents.

Figure 3. A prototype back-propagation neural network used
in this study. It takes the three descriptors chosen by genetic
algorithm (GFA or EP) as inputs and is trained against the
target biological activity with a steepest descent learning
algorithm.
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points so that a complete set of predicted values and the
corresponding cross-validated variables (XRmsE and XR) are
obtained.

The fitness function of a model in a genetic-neural network
(GNN) simulation is defined by use of one of the above
statistical variables in the following way:

The range of fitness scores spanned by the two types of fitness
functions are different: with fitnessRmsE the score is between
0 and ∞, and with fitnessR it is between 0 and 2. For either

definition, the higher the score of a model, the fitter it would
be and consequently the more probable would be its survival
in a long run.
Data Set. The series of 31 antifilarial antimycin analogues

(Table 1) reported by Selwood24 were used in this study. Each
compound was parameterized with 53 physicochemical de-
scriptors that are listed in Table 2; the descriptors used
correspond to those selected by Selwood. The QSARs of this
set of compounds have been extensively studied, so that
detailed comparisons can be made with other results. Selwood
performed a forward-stepping multivariate regression analysis
on the data set and generated a three-descriptor regression
QSAR. Wikel and Dow made a descriptor selection by extract-
ing information from the connecting weights of a full neural
network simulation and constructed an improved regression
QSAR.36 Rogers and Hopfinger integrated genetic program-
ming with regression analysis in their formulation of the
genetic function approximation (GFA) algorithm.21 They found
some linear QSAR models that give much better results than
the Selwood or the Wikel models. Recently, Luke tried a
different genetic approach, known as evolutionary program-
ming (EP),22 and found some good models that GFA had
missed.
Implementation. A computer program in the C++ pro-

gramming language has been written to perform the tasks of
neural network computation and genetic reproduction outlined
above. All calculations were done on Hewlett-Packard 735/
125 workstations. The time requirement for the training of a
single three-descriptor neural network was approximately 1
CPU second. A typical genetic neural network simulation with

Table 1. a Structures of the Antimycin Analogues in This Study

OH

R2

O

R1
1

2
3

4

5
6

7

8

9

10

compd R1 R2 compd R1 R2

1 3-NHCHO NHC14H29 17 3-NHCHO NHC6H13
2 5-NHCHO NH-3-Cl-4-(4-ClC6H4O)C6H3 18 3-NHCHO NHC8H17
3 5-NO2 NH-3-Cl-4-(4-ClC6H4O)C6H3 19 3-NHCOCH3 NHC14H29
4 5-SCH3 NH-3-Cl-4-(4-ClC6H4O)C6H3 20 5-NO2 NHC14H29
5 5-SOCH3 NH-3-Cl-4-(4-ClC6H4O)C6H3 21 3-NO2 NHC14H29
6 3-NO2 NH-3-Cl-4-(4-ClC6H4O)C6H3 22 3-NO2-5-Cl NHC14H29
7 5-CN NH-3-Cl-4-(4-ClC6H4O)C6H3 23 5-NO2 NH-4-C(CH3)3C6H4
8 5-NO2 NH-4-(4-CF3C6H4O)C6H3 24 5-NO2 NHC12H25
9 3-SCH3 NH-3-Cl-4-(4-ClC6H4O)C6H3 25 3-NO2 NHC16H33
10 5-SO2CH3 NH-3-Cl-4-(4-ClC6H4O)C6H3 26 5-NO2 NH-3-Cl-4-(4-ClC6H4NH)C6H3
11 5-NO2 NH-4-(C6H5O)C6H4 27 5-NO2 NH-4-(3-CF3C6H4O)C6H4
12 5-NO2 NH-3-Cl-4-(4-ClC6H4CO)C6H3 28 5-NO2 NH-3-Cl-4-(4-SCF3C6H4O)C6H3
13 5-NO2 NHs-4-(2-Cl-4-NO2C6H3O)C6H4 29 5-NO2 NH-3-Cl-4-(3-CF3C6H4O)C6H3
14 5-NO2 NHS-3-Cl-4-(4-ClC6H4O)C6H3 30 5-NO2 NH-4-(C6H5CHOH)C6H4
15 3-SO2CH3 NHSd-3-Cl-4-(4-CH3OC6H4O)C6H3 31 5-NO2 4-ClC6H4
16 5-NO2 NH-3-Cl-4-(4-ClC6H4S)C6H3

a Data taken from ref 24.

Table 2. Physicochemical Descriptors in the Selwood Data Set

symbol descriptions

ATCH 1-10 partial atomic charges for atoms 1-10
ESDL 1-10 electrophilic superdelocalizabilities for atoms 1-10
NSDL 1-10 nucleophilic superdelocalizabilities for atoms 1-10
DIP MOM,DIP X/Y/Z dipole moment and vectors in X/Y/Z-direction
VDW VOL van der Waals volume
SURF A surface area
MOL WT molecular weight
MOFI X/Y/Z principal moments of inertia in X/Y/Z-direction
PEAX X/Y/Z principal ellipsoid axes in X/Y/Z-direction
S8 DX/Y/Z substituent dimensions of atom 8 in X/Y/Z-directions
S8 1CX/Y/Z substituent coordinates of atom 8 in X/Y/Z-directions
LOGP calculated log partition coefficient for octanol/water
M PNT measured melting point
SUM F sum of F substituent constants
SUM R sum of R substituent constants

residual rms error (RmsE) )x∑
i)1

N

(activitycalc,i - activityobs,i)
2

N
(1)

correlation coefficient (R) )

∑
i)1

N

(activitycalc,i - activitycalc)(activityobs,i - activityobs)

x(∑
i)1

N

activitycalc,i
2 - N activitycalc

2)(∑
i)1

N

activityobs,i
2 - N activityobs

2)

(2)

fitnessRmsE ) 1
RmsE

(3a)

fitnessR ) 1 + R (3b)
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a population of 300 individuals going through 50 generations
required 4-5 CPU hours.

III. Results

Neural Network Simulations on RegressionMod-
els. Several three-descriptor multiple linear regression
QSAR models have been suggested by the four previous
studies described in the Data Section. Our initial
investigation used the same models and replaced re-
gression analysis by neural networks. The results are
shown in Table 3. In most cases, the neural network
models marginally outperformed regression models in
fitting training data. However, comparison of the cross-
validation results shows that all but two of the networks
exhibited considerably inferior predictive power than
the corresponding regression models. We recall that the
choice of descriptors in these models, particularly the
last eight, is optimized in conjunction with a multivari-
ate linear regression analysis. The fact that the regres-
sion models are satisfactory QSARs in terms of both
training (R) and prediction (XR) suggests that the
chosen sets of descriptors have an approximately linear
relationship with biological activity. To investigate this
possibility a neural network monitoring scheme was
used.18 First, the neural network model that was under
investigation was trained in a normal way. After
training, the variation of the output value (in this case
the activity) was monitored on changing the value of
one input while keeping the remaining network inputs
at a constant value. This procedure was repeated for
all other network inputs. The plot of the functional
dependence of MOFI Y, LOGP, and SUM F for the
top genetic-regression model (GFA1/EP1) is shown in
Figure 4. These response curves were correlated with
linear models, as depicted by the straight dotted lines
in the same plot. The R2 values of 0.72, 0.90, and 0.99
obtained for MOFI Y, LOG, and SUM F, respectively,
demonstrate that this model is essentially linear. How-
ever, this does not explain the poorer performance of
the neural networks, which should also be able to treat
linear relationships. One possible reason for this some-
what surprising result, as suggested by a reviewer, is
that the neural network result is based on a single
simulation, so that the prediction may be derived from
a poorly optimized run.

Another question concerns the suitability of the
descriptors in the data set for testing a method like a
neural network that can take into account nonlinear
relationships. It is not unexpected that a number of
descriptors, like ESDL3, LOGP, and SUM F, as well
as many other preferred regression variables reported
in Table 2 of the study of Rogers and Hopfinger, are
linearly correlated with biological activity (|R| > 0.5).
However, many descriptors do not exhibit such correla-
tion, for example, ESDL4, ATCH10, and NSDL3 (|R| <
0.2). Neither the GFA nor the EP linear regression
studies incorporated these nonlinear features to their
top models. Since these models appear to ignore
nonlinear descriptors, it is doubtful that they made the
best use of the data set. It is for this purpose that a
neural network, with its ability to optimize nonlinear
relationships, was introduced.
Genetic Neural Network Simulations. Two sets

of evolutionary simulations with the GNN were per-
formed. In these two runs, a genetic algorithm, either
GFA or EP, was used as a feature-selecting tool, and a
neural network was employed for the feature mapping.
Both simulations, referred as GFA-NN and EP-NN,
contained a population of 300 individuals which evolved
for 100 generations. The fitness score for each indi-
vidual was the reciprocal of the RmsE of the neural
network training set (eq 3a). Figure 5 shows a graph
of the best and the average fitness at different genera-
tion. In the EP-NN run, both the best and the average
scores seemed to converge after 10 generations. The
GFA-NN simulation also reached the same best fitness
score around the same time, but its average fitness
remains essentially at its initial value. This behavior
results from the fact that the simple elitist GFA-NN
algorithm only retains the best model and continues to
create a fresh set of models randomly at every genera-
tion.
These simulations demonstrated some significant

differences between the two genetic algorithms. The
elitist GFA-NN algorithm and the EP-NN algorithm
discovered the same best model at approximately the
same evolution time (Figure 5). However, the remain-

Table 3. Comparison of Linear regression and Neural
Networksa

regression neural network
descriptorsmodel R XR R XR

Selwood ESDL10 LOGP M PNT 0.737 0.667 0.813 0.665
Wikel ATCH4 MOFI X LOGP 0.774 0.679 0.836 0.710
GFA1 MOFI Y LOGP SUM F 0.849 0.804 0.869 0.798
GFA2 ESDL3 SURF A LOGP 0.848 0.803 0.871 0.751
GFA3 ESDL3 MOFI Y LOGP 0.838 0.777 0.839 0.728
EP1 MOFI Y LOGP SUM F 0.849 0.804 0.869 0.798
EP2 ESDL3 SURF A LOGP 0.848 0.803 0.871 0.751
EP3 MOFI Z LOGP SUM F 0.847 0.804 0.865 0.808
EP4 ESDL3 MOFI Y LOGP 0.838 0.777 0.839 0.728
EP5 ESDL3 MOFI Z LOGP 0.838 0.781 0.830 0.598

a The regression correlation coefficients (R) and cross-validated
correlation coefficients (XR) for the reported models are given.
Some of the models derived from the two different genetic
algorithms are identical. GFA1 ) EP1, GFA2 ) EP2, and GFA3
) EP4. There are only seven distinct models. While we realize
that perhaps no more than two decimal points are significant for
these correlation coefficients, we report our results to the third
decimal point for comparison with earlier QSAR of this data. Figure 4. Biological activity as a function of the individual

physicochemical parameter for the best genetic-regression
model (GFA1 and EP1). The best fit linear models (dotted
lines) and their R2 values are also shown.
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ing GFA-NN models were significantly less fit than
those which were derived from EP-NN. An examina-
tion revealed that the other high-ranking EP-NN
models had been discovered by GFA-NN, but these
models were destroyed by crossover or mutation during
reproduction and did not survive in a long run. Thus,
the GFA-NN result at the 100th generation repre-
sented the best model that had been discovered up to
that point, plus a group of mediocre models. Either of
two modifications on the GFA-NN algorithm can lead
to a set of models that is identical to that found by the
EP-NN simulation. First, we could extend elitism by
requiring the system to keep not only the best indi-
vidual, but also some other high-ranking individuals.
Second, we could adopt a scheme which gradually
decreased the probability of mutation, the rate of
crossover, or both. This would mean that an extra
parameter had to be introduced.22 Consequently, we
used only the EP-NN hybrid system in subsequent
studies.
The top six models from each of the two runs are

shown in Table 4. Consistent with the previous studies,
the presence of LOGP in all 12 models provided further
evidence that it was an essential descriptor in this data
set. Other descriptors found in some of regression
studies are MOFI Y, MOFI Z, M PNT, and ATCH4.
However, the linear descriptor ESDL3 does not appear
and the nonlinear NSDL3 appears in the neural net-
work models. There is strong evidence that this latter
descriptor cannot be described by a linear term. At-
tempt to construct regression QSAR with a set of
descriptors that works well with a neural network is
often futile, and it is particularly true if the set contains
a nonlinear input.23 This is the case for these new sets
of descriptors. Both correlation coefficients and cross-
validation results are unsatisfactory when determined
by multiple linear regression (Table 4).
The best GNN models are better than any of the

published models. Not only is the fit of the training data
superior but also more predictive. The best model,
which is common to both genetic neural network simu-
lations, is particularly impressive. Its cross-validated
correlation coefficient (0.866) is higher than the fitted
correlation coefficient (0.849) of the best linear regres-
sion model.

The best neural network model was examined in more
detail. A functional dependence analysis of individual
descriptors was performed with a neural network
monitoring scheme,18 and the results are shown in
Figure 6. The two descriptors LOGP and MOFI Y
were still approximately linear, although there was a
reduction in linearity from that in the regression model
(compare Figure 4 and Figure 6). This difference is due
to the coupling among the different descriptors. For
NSDL3 it is very clear that it cannot be satisfactorily
modeled with a linear term; the fit shown in Figure 6
is very poor (R2 ) 0.12). Biological activity plots of this
type can be used as an aid in drug design. In the
present case biological activity reaches a maximum
value when NSDL3 ) 1.70 and MOFI Y ) 14500 and
seems to be insensitive to LOGP once the value of this
descriptor reaches 7.1. It would be interesting to design
new analogues which have these descriptors optimized
at the corresponding critical values and to determine
whether this led to improved potency. The neural
network has predicted that such compounds, if they can
be made, will have biological activities exceeding the
highest value in the present data set.
Completeness and Efficiency of Genetic Algo-

rithm. Although a genetic algorithm investigates many
possible solutions simultaneously, there is no guarantee
that the best solution can always be found. An exhaus-
tive search is the only method which guarantees such
solution, but this is often impossible in QSAR, as well
as many other problems where genetic algorithms are
used. Fortunately, the use of relatively few descriptor
inputs in the current study permitted us to perform an
exhaustive enumeration of all possible combinations of
three-descriptor models.
A complete solution of the current problem requires

ranking of all 23 42637 three-descriptors models based
on their fitness scores. This exhaustive enumeration
was done, and Table 5 shows the results of the ranking
of all the models listed in Tables 3 and 4 with their
fitness scores. At the end of the EP-NN simulation all
of the 50 best models found in the exhaustive search
were discovered, and only one (the 95th) model out of
the first 100, and 4 out of top 150, were not found. For
practical purposes it is unlikely that researchers would
be able to consider more than a reasonable tier (perhaps
50 or so) of QSAR models. The fact that the EP-NN
algorithm has discovered the top tier models makes this
set of solutions complete in a practical sense.
The efficiency in finding good solutions is a known

strength of genetic algorithms. This is clearly evident
in the present results. The optimal solution that was
revealed by the exhaustive search was discovered as
early as the 10th generation by the current EP-NN sys-
tem: the top 10 models at the 14th and the top 50
models at the 27th. Computationally this is much less
expensive than the exhaustive method that required
calcultion of 23 426 neural network models. On the
EP-NN run, only 3300 (300 × 11, taking account of the
zeroth generation pool) such calculations with a neural
network would be needed for 300 individuals evolving
over 10 new generations.
Simulation with an Alternative Fitness Func-

tion. The genetic neural network simulation described
so far employed a fitness function that was inversely
proportional to the residual error of the training set.

Figure 5. The average and the best fitness of the two genetic
neural network simulations as a function of generation. The
GFA and EP systems reach the same best fitness around the
11th generation. The behavior of the two average fitness
curves are markedly different. In these two GNN runs, the
fitness score is simply the reciprocal of the RmsE of the
training data.
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One apparent weakness in this fitness function is that
it yielded models which were optimal for the training
data but it did not always lead to good predictions for
test data. To address this question an alternative
fitness function was tried with a genetic neural network
simulation (EP-NN/T). Three representative data
points belonging to the low-, medium-, and high-activity
categories were removed from the training set, and they
were treated as the test set. The reason why we
removed so few data points was that we wanted to keep
the configuration for the neural network at 3-3-1.
Removal of too many compounds from the training set
would either lead to a substantial drop in the F ratio or
force a change in the network configuration.
We used a fitness function that was based on the

overall rms error of the test set. An additional criterion
was imposed so that a model would be invalidated if
the residual rms error of the training set did not fall
below an acceptable threshold value of 0.39. This
measure was introduced to prevent the inclusion of
models which gave fortuitous test set predictions with-
out adequate background training. The results are
shown in Table 6. The predictions made for the three
test compounds are not included in the calculation of
XR because they were used in model optimization.
Three of these top seven models were obtained in our

first EP-NN study (Table 4); the same best model was
found. However, in contrast to the first study, all other
high-ranking models had high values of cross-validated
correlation coefficients. All of the top five EP-NN/T
models are not only effective in data fitting; they also
display a high predictive power that is superior to the
best genetic regression model. It is evident that the new
fitness definition favors the propagation of the models
which are more predictive. Since the aim of QSAR is
to make accurate predictions, introductions of such a
test set in the optimization may be of general utility.
Jackknife Validation in Optimization: The Ul-

timate Method. The final GNN simulation of this
study was to obtain a list of three-descriptor models
which were optimized for their predictive capacity.
There were two objectives in this study. First, because
the real goal of QSAR studies is to formulate models
which make accurate predictions, it is important that
such models can be found. Second, this would serve as
a validation of our preceding work, particularly the
results of the EP-NN/T simulation. To achieve this,
we needed to run a GNN simulation with a fitness
function that was related to the predictiveness. The
cross-validated correlation coefficient was a suitable
candidate. In this new simulation (codename EP-NN/

Table 4. Two Sets of Top Models Deriving from Genetic Neural Network Simulationsa

neural network regression
descriptorsmodel RmsE R XR R XR

EP-NN1 NSDL3 MOFI Y LOGP 0.322 0.919 0.866 0.777 0.284
EP-NN2 ATCH4 ATCH7 LOGP 0.330 0.914 0.755 0.660 0.494
EP-NN3 NSDL3 MOFI Z LOGP 0.338 0.910 0.830 0.782 0.296
EP-NN4 LOGP M PNT SUM F 0.348 0.905 0.762 0.779 0.685
EP-NN5 NSDL3 VDW V LOGP 0.349 0.916 0.753 0.691 0.276
EP-NN6 NSDL8 MOFI Y LOGP 0.349 0.907 0.860 0.786 0.470

GFA-NN1 NSDL3 MOFI Y LOGP 0.322 0.919 0.866 0.777 0.284
GFA-NN2 NSDL9 VDW V LOGP 0.353 0.901 0.814 0.696 0.329
GFA-NN3 ATCH5 NSDL9 LOGP 0.368 0.892 0.726 0.698 0.372
GFA-NN4 NSDL10 MOFI Y LOGP 0.383 0.883 0.789 0.786 0.598
GFA-NN5 ATCH3 LOGP M PNT 0.415 0.862 0.768 0.755 0.637
GFA-NN6 ATCH3 S8 1DY LOGP 0.424 0.855 0.688 0.740 0.634
a The models are ranked by their residual rms error (RmsE) in training. Also reported are the correlation coefficients (R) and the

cross-validated correlation coefficient (XR) of the neural network models and their regression counterparts.

Figure 6. Biological activity as a function of the individual
physicochemical parameter for the best genetic neural network
model. The best fit straight line (dotted lines) and their r2
values are also shown.

Table 5. Ranking of All the Models Listed in Tables 3 and 4
Based on an Exhaustive Enumeration of All Three-Descriptors
Neural Network Models (a Total of 23 426)

model fitness score rank

Selwood 2.052 532
Wikel 2.189 268
GFA1 2.478 62
GFA2 2.502 54
GFA3 2.257 187
EP1 2.478 62
EP2 2.502 54
EP3 2.446 71
EP4 2.257 187
EP5 2.203 248

EP-NN1 3.109 1
EP-NN2 3.027 2
EP-NN3 2.962 3
EP-NN4 2.876 4
EP-NN5 2.864 5
EP-NN6 2.862 6

GFA-NN1 3.109 1
GFA-NN2 2.830 7
GFA-NN3 2.719 13
GFA-NN4 2.614 23
GFA-NN5 2.410 82
GFA-NN6 2.361 108
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X), a population of 300 individuals were again used. The
fitness of a given model was directly proportional to its
cross-validated correlation coefficient (eq 3b).
The models derived from this run are listed in the

descending order with their cross-validation scores
(Table 7). Six of the seven high scoring models discov-
ered in the EP-NN/T simulation represent the six best
models in this limiting case. This is an important
validation of the EP-NN/T run because a jackknife
analysis of such complexity requires large computing
resources. The current simulation, which used over 150
CPU hours on a fast machine, was only feasible because
of the small data set and the simplicity of the model.
The results indicate that a much less expansive alterna-
tive (EP-NN/T) leads to solutions of similar predictive
quality.
Construction of a Grand Model. The GFA study

of Rogers et al.21 reported that by averaging the outputs
of the regression equations of several good models the
correlation coefficients of the training set would in-
crease. This is an interesting observation, but it is
important to know if the cross-validated correlation
coefficients is also improved by the same treatment. The
predicted output values from several high-scoring EP-
NN/X models discovered in the last study were aver-
aged, and the behavior of the new cross-validated
correlation coefficients was investigated.
Two plots are shown in Figure 7. The first series of

data, denoted by the filled circles, represents the cross-
validated correlation coefficient of the Nth best model
in the last study. The second series of data, denoted
by the open circles, shows the cross-validated correlation
coefficient of the composite model obtained by averaging
a number of models. On averaging the best and the
second-rated model, the correlation coefficient increased
from 0.866 to 0.872. Further averaging of up to eight
models showed that the correlation coefficients fluctuate

but are confined within a narrow range from 0.86 to
0.87, regardless of the predictive quality of the added
model.
In the present simultaneous averaging of the predic-

tions of a few higher performance models leads to a very
small gain in predictiveness; it is not clear that the gain
is statistically significant. However, we believe that
predictions made by this approach are better. First, the
scope of predicted values given by different models
permits an error estimation to be made for the predic-
tion. Figure 8 shows the average predicted activities
against observed values with error bars set to one
standard deviation of the predicted ranges using the
eight models listed in Table 7. Furthermore, this type

Table 6. QSAR Obtained by the EP-NN/T Simulation Using a Fitness Function That Is Inversely Proportional to Residual rms
Error of the Test Seta

neural net model
descriptorsmodel test set RmsE train set RmsE R XR

EP-NN/T1 NSDL3 MOFI Y LOGP 0.305 0.337 0.919 0.875
EP-NN/T2 NSDL3 MOFI Z LOGP 0.404 0.349 0.910 0.850
EP-NN/T3 MOFI X LOGP SUM F 0.449 0.368 0.893 0.837
EP-NN/T4 NSDL8 MOFI Y LOGP 0.452 0.324 0.907 0.872
EP-NN/T5 NSDL8 MOFI Z LOGP 0.520 0.334 0.888 0.866
EP-NN/T6 NSDL10 LOGP SUM F 0.542 0.346 0.880 0.782
EP-NN/T7 NSDL9 MOFI Y LOGP 0.580 0.344 0.892 0.863
a The correlation coefficients (R) and the cross-validated correlation coefficient (XR) of the neural network models are reported in the

last column. As a measure of data validation, the predictions made for the three test set compounds are discarded in the XR calculation
because of their role in the model construction.

Table 7. Result from the Final Jackknife Validation (EP-NN/
X) Runa

descriptorsmodel model XR

EP-NN/X1 NSDL3 MOFI Y LOGP 0.866
EP-NN/X2 NSDL8 MOFI Y LOGP 0.860
EP-NN/X3 NSDL8 MOFI Z LOGP 0.850
EP-NN/X4 NSDL9 MOFI Y LOGP 0.843
EP-NN/X5 NSDL3 MOFI Z LOGP 0.830
EP-NN/X6 MOFI X LOGP SUM F 0.827
EP-NN/X7 NSDL8 VDW V LOGP 0.823
EP-NN/X8 NSDL8 SURF A LOGP 0.822
a The top six models have previously been identified in the EP-

NN/T simulation.

Figure 7. Diagram showing the cross-validated correlation
coefficient plotted against theN-averaged composite model (O)
and the Nth best model (b) in EP-NN/X simulation.

Figure 8. Plot of predicted activity versus observed activity.
The predictions are made by averaging the results of the eight
models listed in Table 7; the error bar corresponds to one
standard deviation from the averaged value.
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of averaging provides an attractive means to make
greater use of information in the data set without the
possibility of overfitting.
Choice of Descriptors. Receptor-drug binding

affinity and drug transport are two of the important
attributes of a drug. For many years medicinal chem-
ists have attempted to model these two properties with
empirical physicochemical parameters. It is recognized
that in receptor-drug binding the dominant factors are
the steric and electrostatics interactions between the
two molecules. It is for this purpose that many bulk
and electronic properties have been introduced into the
parameterization of drug candidates. Drug transport
through membrane, by contrast, is most successfully
modeled by a hydrophobicity parameter. The parameter
of choice is the partition coefficient between octanol and
water because of the ease in performing either direct
measurements or numerical computations.
The choice of descriptors of the highly predictive

models (Table 7) discovered in this study were exam-
ined, and some interesting similarities and differences
were observed. It was noted that all models contained
a descriptor in each of the bulk, electronic, and hydro-
phobic categories. Since LOGP was the sole hydropho-
bicity parameter in the descriptor set, it was always
included. The steric bulk of the drug candidates was
represented either by a directional measure of moments
of inertia for a specific principal axis or by a global
measure in terms of van der Waals volume or surface
area. The electronic information was provided by the
values of NSDL at atom 3, where there is considerable
structural variations (Table 1), or at the carbonyl group.
The latter might involve its ability to form hydrogen
bonds, or more speculatively, its role as a site of
nucleophilic attack involved in drug metabolism. These
results show that the choices of descriptors in our
models makes good chemical sense. Furthermore, it
suggests that for this particular data set, a small
number of descriptors is sufficient to construct a good
predictive QSAR, provided the crucial information on
steric, electrostatics, and hydrophobic properties is
adequately described.

IV. Concluding Discussion

A novel QSAR tool, GNN, that combines a genetic
algorithm with a neural network is applied to the
Selwood data set. GNN models with fitting and predic-
tion ability that exceed all published models are ob-
tained. The effectiveness of the evolutionary program-
ming algorithm is demonstrated by selection of the best
sets of descriptors. The selection is shown to be optimal
in terms of both completeness and efficiency when the
result is compared with an exhaustive enumeration
benchmark. The key strength of a neural network is
its ability to allow for flexible mapping of the selected
features by manipulating their functional dependence
implicitly. Unlike regression analysis, neural network
handles both linear and nonlinear relationships without
adding complexity to the model. This capability offsets
the larger computing time required by a neural network
simulation because it avoids the need of examining
separately each possible nonlinearity.19 Furthermore,
a neural network permits the evaluation of the func-
tional dependence of the descriptors, which can be an
aid in future drug design.

Another important result from this study is that a
simple partitioning of data into training and test sets
led to a result mimicking that of genuine jackknifing.
Since our choice of test set is somewhat arbitrary, it is
possible that result is not of general validity. A jack-
knife procedure remains the ultimate validation method.
When it becomes computationally intractable, multiple
cross-validation (or “leave-one-out”), in which a series
of random partitionings of training and test data are
used, can serve as an alternative strategy.38

An advantage of a genetic algorithm is its ability to
generate multiple predictors that are of comparable
quality. An attempt is made in this study to combine
these multiple QSARs. A composite model is con-
structed by merging the predictions obtained from
several high scoring GNN models. In the present case
this approach does not lead to any improvement that is
of statistical significance, probably because the best
three-descriptor GNN models are already highly predic-
tive. The choice of descriptor sets for the QSAR is
examined, and it is shown that they include the steric,
electrostatic, and hydrophobic attributes of each mol-
ecule. The result suggests that a small number of
chemically meaningful descriptors will provide the most
predictive QSAR.
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